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Abstract

Limoniidae, the most speciose family in the superfamily Tipuloidea, consists of four subfamilies and more than 11,000 species. How-
ever, mitochondrial (mt) genome sequences, which have been widely used for phylogenetic study, are available for only 11 species 
across three subfamilies. Thus, a larger variety of mt genome sequences in Limoniidae are required to improve our understanding of 
tipuloid phylogeny and genomic evolution. Here we present mt genomes of Elephantomyia (Elephantomyia) inulta Alexander, 1938 
and Helius (Helius) pluto Alexander, 1932, representing the first mt genomes of the tribe Elephantomyiini (Limoniidae). The two 
mt genomes are typical circular DNA molecules and show similar gene order, nucleotide composition and codon usage. Standard 
ATN start and TAR stop codons are present in most protein-coding genes. All transfer RNA (tRNA) genes exhibited the cloverleaf 
secondary structure typical for metazoans except in tRNASer(AGN), which lacks the dihydrouridine arm. Phylogenetic analyses were per-
formed based on four nucleotide matrixes for the currently sequenced species of Tipuloidea using Bayesian inference and maximum 
likelihood methods. Four-cluster likelihood mapping was used to study incongruent signals between different topologies. Pediciidae 
is supported as the earliest lineage in Tipuloidea, and the sister-group relationship between Cylindrotomidae and Tipulidae is also 
supported, but the monophyly of Limoniidae is not supported. Our study also supports the monophyly of Elephantomyiini (Elephan-
tomyia + Helius), as one of origins of flower-visiting in Limoniidae. Although Elephantomyiini is sister to Limoniinae + Epiphragma 
(Limnophilinae) in our study, a more precise understanding of its phylogenetic position in Tipuloidea will require additional studies 
that include a broader species sample.
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1. Introduction

Crane flies are one of the most taxonomically diverse 
groups of flies with more than 15,000 described species 
in about 500 genera and subgenera (Oosterbroek 2022). 
They were first treated as a single family (i.e. Tipulidae), 
mainly due to the work of Alexander (1919, 1920, 1965) 
and Edwards (1911, 1912, 1916a, 1916b, 1921, 1923, 
1926). However, Savchenko (1966, 1979, 1983) and 
Lackschewitz (1925, 1964) preferred to treat crane flies 
as a superfamily (i.e. Tipuloidea), which was supported 
by Hennig (1973) (Petersen et al. 2010). In the classifi-
cation of Soós et al. (1992), Tipuloidea was divided into 
three families: Limoniidae, Cylindrotomidae and Tipuli-
dae. Starý (1992) established a four-family classification 
system with the elevation of Pediciidae from Limoniidae, 
which was widely supported (Ribeiro 2008; Petersen et 
al. 2010; Zhang et al. 2016; Kang et al. 2017).

Limoniidae is the most speciose family in Tipuloidea 
and consists of about 150 genera and more than 11,000 
species around the world (Oosterbroek 2022), account-
ing for four-fifths of the worlds crane flies. As ‘short-
palped’ crane flies, members of Limoniidae (including 
Pediciidae) were first recognized based on the length of 
the terminal segment of palpus, with subsequent quali-
tative works by Alexander (1919, 1920) and Savchenko 
(1966, 1979, 1983) further framing the group. Although 
synapomorphies for Limoniidae appear to be a flattened 
antepronotum and presence of the subspiracular sclerite 
(Starý 1992), members of Limoniidae are usually diag-
nosed based on the absence of characters defining the oth-
er tipuloid families (Petersen et al. 2010). Limoniidae is 
further subdivided into four subfamilies (i.e. Chioneinae, 
Dactylolabidinae, Limnophilinae and Limoniinae) (Starý 
1992), based on the numbers of radial and medial wing 
veins, the adult tibial spurs and the adult male gonos-
tyli. However, the delineations of these subfamilies are 
unclear (Petersen et al. 2010). In addition, Limoniidae 
has long been controversial and has been frequently dis-
cussed with respect to both its intragroup relationships 
and phylogenetic position within Tipuloidea. Early anal-
yses by Alexander (1919, 1920) and Savchenko (1966, 
1979, 1983) presented the first evolutionary hypotheses 
for Limoniidae (Fig. 1A, B), although both were qual-
itative and proposed relationships based on somewhat 
unstated criteria. Based on 105 morphological characters 
from larvae and pupae, Oosterbroek and Theowald (1991) 
recovered a polytomy between Pediciinae, Chioneinae + 
Limnophilinae, and a clade containing several unplaced 
Limoniidae genera, Dactylolabidinae, Limoniinae and 
Cylindrotomidae + Tipulidae (Fig. 1C). Several more re-
cent studies based on morphological and molecular data 
have demonstrated that Pediciidae is sister to the remain-
ing Tipuloidea and that Limoniidae is not a natural group 
(Ribeiro 2008; Petersen et al. 2010) (Fig. 1D, E).

Elephantomyiini is a tribe within Limoniidae and in-
cludes three genera: Elephantomyia Osten Sacken, 1860, 
Helius Lepeletier and Serville, 1828 and Protohelius 
Alexander, 1928 (Savchenko et al. 1992; Podenas and 

Gelhaus 2007). In addition, the genus Toxorhina Loew, 
1850 has also been placed in this tribe due to a close re-
lationship with Elephantomyia, which was supported by 
Alexander (1920) based on adult characters and by Hynes 
(1997) based on immature characters. With a four-genus 
system, Elephantomyiini has 528 species/subspecies 
widely distributed in all biogeographic regions, of which 
231 belong to Helius, 152 to Toxorhina, 137 to Elephan-
tomyia and eight to Protohelius (Oosterbroek 2022). The 
origin and evolution of their flower-visiting habits and 
related morphological characteristics are very interest-
ing topics. Except for Protohelius species, members of 
Elephantomyiini differ from most limoniid crane flies in 
their elongate mouthparts (Fig. 2A–E), which can visit 
flowers to ingest nectar (Oosterbroek and Lukashevich 
2021). Another widespread genus with elongate mouth-
parts and flower-visiting habits in Limoniidae is Geran-
omyia Haliday, 1833. However, it should be noted that 
only the rostrum is elongate in Elephantomyiini, while in 
Geranomyia, the labial lobe is elongate but the rostrum is 
short (Fig. 2F).

In the past three decades, a large number of taxonom-
ic studies have been carried out on the tribe Elephanto-
myiini, mainly focusing on the species in Asia (Zhang et 
al. 2015a, 2015b; Podenas et al. 2020), South America 
(Welch and Gelhaus 1994; Ribeiro and Amorim 2002) 
and Australia (Theischinger 1994, 1996, 2000). In addi-
tion, there is research on fossil species by Krzemiński and 
Kania et al. (Krzemiński 1991, 1993, 2002; Krzemińs-
ki and Freiwald 1991; Kania et al. 2013, 2016a, 2016b, 
2018; Kania 2014, 2015; Krzemiński et al. 2014; Ko-
peć et al. 2016; Kania-Kłosok and Krzemiński 2021; 
Kania-Kłosok et al. 2021, 2022), while other research-
ers have also made some contributions (Podenas 2002; 
Ribeiro 2003; Wu et al. 2019). Although some larval 
records exist for the tribe (Hynes 1997; Hancock et al. 
2000; Krivosheina 2010, 2012), the biology of the larval 
stages of most species is unknown.

In addition, the monophyly, taxonomic status and po-
sition of Elephantomyiini have been subject to debate 
(Fig. 1). The genera Elephantomyia and Helius were 
classified into two different tribes (Alexander 1965; Ale-
xander and Alexander 1973). In the opinion of Savchen-
ko, the genera Elephantomyia and Helius are related, but 
their placement into one tribe would be an arbitrary deci-
sion, as only similarity of adult characters (e.g. an elon-
gate rostrum) supported it (Krivosheina 2012). Based on 
combined analysis of morphological characters and two 
nuclear genes, Petersen et al. (2010) supported the sis-
tergroup Elephantomyia + Helius and suggested that this 
clade should be treated as a subfamily. However, based 
on larval characters, Krivosheina (2012) questioned the 
monophyly of Elephantomyia + Helius as well as the po-
sition of these two genera in Limoniinae, and considered 
that Elephantomyia should be placed in the subfamily 
Limnophilinae, while Helius cannot be assigned to any 
known subfamily thus should be elevated into a separate 
subfamily.

The mitochondrial (mt) genome is a double strand 
molecule of 15–16 kb in size that typically contains 13 
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protein-coding genes (PCGs), 22 transfer RNA (tRNA) 
genes, two ribosomal RNA (rRNA) genes and a noncod-
ing A + T-rich region (control region). It has become the 
most extensively studied genomic system in insects. It 
is now widely used in the study of insect phylogenetics 
and molecular evolution due to its maternal inheritance, 
fast evolutionary rate, and highly conserved gene content 
(Song et al. 2016; Chen et al. 2017; Liu et al. 2017; Wang 
et al. 2017; Feng et al. 2018; Zhang et al. 2018, 2022; Zhu 

et al. 2018; Ren et al. 2019; Su and Liang 2019; Wang 
and Huang 2019; Zhao et al. 2019; Tang et al. 2020; Li 
et al. 2021; Wang et al. 2021; Shi et al. 2021; Sun et al. 
2021; Zheng et al. 2021; Lin et al. 2022; Mo et al. 2022; 
Song et al. 2022). Beckenbach (2012) reported the first 
mt genome of Tipuloidea. In the following decade, many 
mt genome sequences for the superfamily Tipuloidea have 
been produced, including the first mt genomes for the 
families Cylindrotomidae, Pediciidae and Limoniidae, for 

Figure 1. Previous hypotheses for the relationships among major Tipuloidea groups proposed by A Alexander (1919, 1920), 
B Savchenko (1966, 1979, 1983), C Oosterbroek and Theowald (1991), D Ribeiro (2008) and E Petersen et al. (2010). After Peters-
en et al. 2010. The genera of Elephantomyiini are in red color.



Kang et al.: Dipteran Elephantomyiini mitochondrial genome analyses734

the limoniid subfamilies Chioneinae, Limnophilinae and 
Limoniinae, and for the tipulid subfamily Ctenophorinae 
(Zhang et al. 2016; Kang et al. 2019; Zhao et al. 2019; 
Zhao et al. 2021). Mitochondrial genomes for Tipuloidea, 
however, are far from sufficient. Before the present study 
(November 2022), 27 complete or nearly complete mt ge-
nomes of Tipuloidea were available in GenBank of NCBI 
(https://www.ncbi.nlm.nih.gov), of which 14 represent 
Tipulidae, 11 Limoniidae, one Cylindrotomidae and one 
Pediciidae. In this study, we analyzed the first two mt ge-
nome sequences from the tribe Elephantomyiini (Limonii-
dae) and reconstructed phylogenetic relationships in Tipu-
loidea, using maximum likelihood and Bayesian inference 
methods, aiming to provide new genomic data for the 
phylogeny of Tipuloidea. The monophyly and taxonomic 
status of Elephantomyiini will be explored, to test whether 
the elongate rostrum of Elephantomyiini is a synapomor-
phy or the result of parallel evolution, as well as examine 
the origin and evolution of flower-visiting in Limoniidae.

2. Materials and methods

2.1. Specimen sample and DNA 
extraction

Adult specimens of Elephantomyia (Elephantomyia) inu-
lta Alexander, 1938 were collected from Motuo, Linzhi, 
Tibet, China, and adult specimens of Helius (Helius) plu-
to Alexander, 1932 were collected from Mount Daming, 
Nanning, Guangxi, China. Specimens were identified 

based on Zhang et al. (2015b) and Alexander (1932). All 
specimens were preserved in 96% ethanol at –20 °C for 
long-term storage at the China Agricultural Universi-
ty, Beijing, China. For each species, genomic DNA was 
extracted from thoracic muscle tissue using the DNeasy 
Blood and Tissue kit (Qiagen) according to the manufac-
turers protocol.

2.2. Mitochondrial genome sequencing 
and assembly

An Illumina TruSeq library was prepared with 450 bp 
average insert size and sequenced on the Illumina His-
eq 2500 platform with 250 bp paired-end reads. The ge-
nomes of the two species were sequenced on one lane. 
About 4 Gb of clean data was obtained from the library 
after trimming using Trimmomatic (Bolger et al. 2014). 
De novo assemblies of high-quality reads were conducted 
using IDBA-UD 1.1.1 (Peng et al. 2012), with minimum 
and maximum k values of 80 bp and 240 bp, respectively. 
Fragments of COI near the 5’-terminus (~610 bp) were 
amplified for each species by polymerase chain reac-
tion (PCR) with primers LCO1490 (5’-GGTCAACA-
AATCATAAAGATATTGG-3’ forward) and HCO2198 
(5’-TAAACTTCAGGGTGACCAAAAAATCA-3’ re-
verse) (Folmer et al. 1994). The PCR was performed in a 
25 μL volume containing 12.5 μL Taq PCR Master Mix, 
1.0 μL of DNA extract, 1.0 μL primer LCO1490, 1.0 μL 
Primer HCO2198 and 9.5 μL ddH2O. The cycling profile 
was 94 °C for 4 min, 30 cycles of 94 °C for 30 sec, 45 °C 
for 30 sec, 72 °C for 1 min, and a final extension period of 
72 °C for 10 min. Successful PCR products were purified 

Figure 2. General morphology of limoniid crane flies with elongate mouthparts, represented by A Elephantomyia (Elephantomyo-
des) tianmushana Zhang, Li and Yang, 2015, B Elephantomyia (E.) laohegouensis Zhang, Li and Yang, 2015, C Toxorhina (Cera-
tocheilus) omnifusca Zhang, Li and Yang, 2015, D Helius (H.) pluto Alexander, 1932, E Helius (H.) pallidissimus Alexander, 1930 
and F Geranomyia subablusa Qian and Zhang, 2020. Scale bars = 2.0 mm.

https://www.ncbi.nlm.nih.gov
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and sequenced by Sangon Biotech (Shanghai, China). The 
COI fragments served as bait references to identify best-fit 
mt contigs under BLAST searches (Altschul et al. 1990) 
with minimum similarity 98%. For checking assembly 
accuracy, clean reads were mapped onto the obtained mt 
contigs using Geneious 9.0.2 (Kearse et al. 2012).

2.3. Mitochondrial genome annotation 
and sequence analysis

The protein-coding, rRNA and tRNA genes were identified 
using the MITOS2 Webserver (http://mitos2.bioinf.uni-
leipzig.de/index.py). Protein-coding genes that could not 
be predicted by that program were annotated by alignment 
with the homologous genes reported in other crane flies. 
Nucleotide composition of mt genomes and PCG codon 
usage was analyzed in MEGA 7.0 (Kumar et al. 2016). AT-
skew [(A–T)/(A + T)] and GC-skew [(G–C)/(G + C)] were 
used to measure nucleotide compositional differences be-
tween genes (Perna and Kocher 1995). DnaSP 5.0 (Lib-
rado and Rozas 2009) was used to calculate synonymous 
(Ks) and non-synonymous (Ka) substitution rates, and Ka/
Ks ratio (Hurst 2002) was calculated manually.

2.4. Molecular analyses

A total of 31 mt genomes were used for molecular anal-
yses, including the two newly sequenced mt genomes 
of Elephantomyiini, 26 complete or nearly complete mt 
genomes of Tipuloidea available in GenBank, and three 
mt genomes of Trichoceridae used as outgroup (Table 1). 
The mt genome of Tipula (Pterelachisus) varipennis Mei-
gen, 1818 in Tipuloidea was not included because it lacks 
both rRNA genes.

The protein-coding and RNA genes were aligned in-
dividually with the MAFFT 7.0 online server with the 
algorithm G-INS-i strategy (Katoh and Standley 2013). 
Individual gene alignments were checked manually in 
MEGA 7.0 after removing poorly aligned sites using 
GBlocks 0.91b (Talavera and Castresana 2007). Some 
studies suggest that RNA genes evolve too quickly or 
are too difficult to align to provide phylogenetic signal at 
deep nodes, but others suggest that the addition of these 
genes in mt genome phylogenies can improve the resolu-
tion and support (Cameron et al. 2007). Alternatively, the 
third codon positions of PCG have been shown to con-
tain high AT content and accelerated rates of evolution-
ary change, and so, third codon positions are removed in 

Table 1. Information of species used in molecular analysis with GenBank accession numbers of mitochondrial genome sequences.

Family Subfamily Species Accession Number
Pediciidae Pediciinae Pedicia sp. KT970062

Limoniidae

Chioneinae
Chionea crassipes gracilistyla Alexander, 1936 MK941181
Symplecta (Symplecta) hybrida (Meigen, 1804) NC_030519

Limnophilinae

Conosia irrorata (Wiedemann, 1828) NC_057072
Epiphragma (Epiphragma) mediale Mao and Yang, 2009 NC_057085
Euphylidorea (Euphylidorea) dispar (Meigen, 1818) MT410841
Paradelphomyia sp. KT970061
Pseudolimnophila (Pseudolimnophila) brunneinota Alexander, 1933 MN398932 

Limoniinae

Dicranomyia (Dicranomyia) modesta (Meigen, 1818) MT628560
Elephantomyia (Elephantomyia) inulta Alexander, 1938 This study
Helius (Helius) pluto Alexander, 1932 This study
Limonia phragmitidis (Schrank, 1781) NC_044484 
Metalimnobia (Metalimnobia) quadrinotata (Meigen, 1818) MT584154 
Rhipidia (Rhipidia) chenwenyoungi Zhang, Li and Yang, 2012 KT970063

Cylindrotomidae Cylindrotominae Cylindrotoma sp. KT970060 

Tipulidae

Ctenophorinae Tanyptera (Tanyptera) hebeiensis Yang and Yang, 1988 NC_053795 

Tipulinae

Nephrotoma flavescens (Linnaeus, 1758) MT628586
Nephrotoma quadrifaria quadrifaria (Meigen, 1804) MT872674 
Nephrotoma tenuipes (Riedel, 1910) MN053900 
Nigrotipula nigra nigra (Linnaeus, 1758) MT483653
Tipula (Acutipula) cockerelliana Alexander, 1925 NC_030520 
Tipula (Dendrotipula) flavolineata Meigen, 1804 MT410828 
Tipula (Formotipula) melanomera gracilispina Savchenko, 1960 MK864102
Tipula (Lunatipula) fascipennis Meigen, 1818 NC_050319
Tipula (Nippotipula) abdominalis (Say, 1823) JN861743
Tipula (Tipula) paludosa Meigen, 1830 MT483696
Tipula (Vestiplex) aestiva Savchenko, 1960 NC_063751
Tipula (Yamatotipula) nova Walker, 1848 NC_057055

Trichoceridae
Paracladurinae Paracladura trichoptera (Osten Sacken, 1877) JN861751 

Trichocerinae
Trichocera bimacula Walker, 1848 JN861750
Trichocera sp. MW263048

http://mitos2.bioinf.uni-leipzig.de/index.py
http://mitos2.bioinf.uni-leipzig.de/index.py
http://www.ncbi.nlm.nih.gov/nuccore/KT970062
http://www.ncbi.nlm.nih.gov/nuccore/MK941181
http://www.ncbi.nlm.nih.gov/nuccore/NC_030519
http://www.ncbi.nlm.nih.gov/nuccore/NC_057072
http://www.ncbi.nlm.nih.gov/nuccore/NC_057085
http://www.ncbi.nlm.nih.gov/nuccore/MT410841
http://www.ncbi.nlm.nih.gov/nuccore/KT970061
http://www.ncbi.nlm.nih.gov/nuccore/MN398932
http://www.ncbi.nlm.nih.gov/nuccore/MT628560
http://www.ncbi.nlm.nih.gov/nuccore/NC_044484
http://www.ncbi.nlm.nih.gov/nuccore/MT584154
http://www.ncbi.nlm.nih.gov/nuccore/KT970063
http://www.ncbi.nlm.nih.gov/nuccore/KT970060
http://www.ncbi.nlm.nih.gov/nuccore/NC_053795
http://www.ncbi.nlm.nih.gov/nuccore/MT628586
http://www.ncbi.nlm.nih.gov/nuccore/MT872674
http://www.ncbi.nlm.nih.gov/nuccore/MN053900
http://www.ncbi.nlm.nih.gov/nuccore/MT483653
http://www.ncbi.nlm.nih.gov/nuccore/NC_030520
http://www.ncbi.nlm.nih.gov/nuccore/MT410828
http://www.ncbi.nlm.nih.gov/nuccore/MK864102
http://www.ncbi.nlm.nih.gov/nuccore/NC_050319
http://www.ncbi.nlm.nih.gov/nuccore/JN861743
http://www.ncbi.nlm.nih.gov/nuccore/MT483696
http://www.ncbi.nlm.nih.gov/nuccore/NC_063751
http://www.ncbi.nlm.nih.gov/nuccore/NC_057055
http://www.ncbi.nlm.nih.gov/nuccore/JN861751
http://www.ncbi.nlm.nih.gov/nuccore/JN861750
http://www.ncbi.nlm.nih.gov/nuccore/MW263048
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most phylogenetic studies (Cameron et al. 2009; Mao et 
al. 2012). However, third position removal also drastical-
ly lowers the phylogenetic information content provided 
by these sites, and so comparison among trees inferred 
both with and without these 3rd sites included is required 
to fully evaluate their impact on relationships (Cameron 
et al. 2007; Fenn et al. 2008; Cameron 2014). Therefore, 
alignments of individual genes were concatenated using 
SequenceMatrix 1.8 (Vaidya et al. 2011) to generate the 
following four datasets: (1) PCGRNA matrix, including 
all three codon positions of 13 PCGs, large rRNA (lr-
RNA) and 18 tRNA genes (only these RNA genes are 
available for all species) (11,353 bp); (2) PCG matrix, in-
cluding all three codon positions of 13 PCGs (9,444 bp); 
(3) PCG12RNA matrix, including the first and second 
codon positions of 13 PCGs, lrRNA and 18 tRNA genes 
(8,205 bp); and (4) PCG12 matrix, including the first and 
second codon positions of 13 PCGs (6,296 bp).

Heterogeneous sequence divergence can lead to strong 
biases in tree reconstructions, such as long branch effects 
or the misplacement of rogue taxa (Kück et al. 2014), in 
particular when the taxon sampling is poor, or the out-
group is distant (Felsenstein 1978; Philippe and Laurent 
1998). AliGROOVE 1.07, a tool that can detect strongly 
derived sequences, was used to offer the possibility to ex-
clude taxa or gene partitions (Kück et al. 2014). Phyloge-
netic trees were inferred for each dataset using Bayesian 
inference (BI) and maximum likelihood (ML) methods. 
Partitioning schemes and the best-fit substitution mod-
els were determined in PartitionFinder 2.1.1 with the 
BIC criterion and greedy-search algorithm (Lanfear et 
al. 2017). The BI analysis was performed in MrBayes 
3.2.7 (Huelsenbeck and Ronquist 2001) with the default 
settings and four independent runs of 5–10 million gen-
erations with sampling every 1000 generations; after the 
average standard deviation of split frequencies fell below 
0.01, the initial 25% of samples were discarded as burn-
in. The ML analysis was conducted with RAxML 8.2.4 
(Stamatakis 2014) using the GTRGAMMAI model; the 
best ML tree was calculated with branch support estimat-
ed from 1000 bootstrap replicates. The program TreePuz-
zle 5.3 (Strimmer and von Haeseler 1997; Schmidt et 
al. 2002) was used for four-cluster likelihood mapping 
(FcLM) analysis to evaluate single topological splits.

3. Results and discussion

3.1. General characters of 
mt genomes

The mt genomes of two crane fly species in the tribe El-
ephantomyiini, E. (E.) inulta and H. (H.) pluto, are se-
quenced and analyzed for the first time. The nearly com-
plete mt genomes of E. (E.) inulta (GenBank accession 
no. OP556661) and H. (H.) pluto (GenBank accession 
no. OP556662) are 14,551 bp and 14,358 bp in length, 
respectively. The control regions and short stretches on 

either side of the control regions are not obtained for ei-
ther species. In the mt genome of E. (E.) inulta, 35 genes 
are detected (tRNAIle, tRNAGln and partial small rRNA 
( srRNA) are not detected), while in the mt genome of 
H. (H.) pluto, 34 genes are detected (tRNAIle, tRNAGln, 
 tRNAMet, partial srRNA and partial ND2 are not detected) 
(Fig. 3; Table 2). The composition and arrangement in 
both two mt genomes are identical to the presumed an-
cestral insect mt genome (Boore 1999). The organization 
of both mt genomes are generally compact. Intergenic 
spacers in E. (E.) inulta are 14 in number and generally 
less than 18 bp, with the largest between tRNASer(UCN) and 
ND1, while the intergenic spacers in H. (H.) pluto are 19 
in number and generally less than 22 bp, with the largest 
between tRNACys and tRNATyr. Both mt genomes also have 
overlapping genes but no genes overlapped by more than 
8 bp (Table 2).

3.2. Nucleotide composition

The mt genomes of both Elephantomyiini species are 
biased to high A+T% across their four major genome 
partitions (i.e. PCGs, tRNA genes, lrRNA gene and srR-
NA gene). The AT contents of whole mt genome, PCGs, 
tRNA genes and lrRNA gene in E. (E.) inulta (76.4%, 
75.2%, 78.8% and 81.5%) are lower than those in H. 
(H.) pluto (76.8%, 75.8%, 79.4% and 82.1%), but the AT 
content of the srRNA gene in E. (E.) inulta (78.9%) is 
higher than that in H. (H.) pluto (76.3%). Both species 
show slightly positive AT-skew (0.01, 0.02) and negative 
GC-skew (–0.18, –0.21) for the whole mt genome, but 
show negative AT-skew (–0.16, –0.16; –0.04, –0.05) and 
positive GC-skew (0.04, 0.03; 0.33, 0.33) for PCGs and 
the lrRNA gene. For tRNAs, both species show insignif-
icant or no AT-skew (0.01, 0.00) and positive GC-skew 
(0.11, 0.14). For the srRNA gene, E. (E.) inulta shows 
positive AT (0.02) and GC-skews (0.32), while H. (H.) 
pluto shows negative AT-skew (–0.03) and positive GC-
skew (0.27) (Table 3). For both Elephantomyiini species, 
the whole mt genome and the four major partitions all 
have the same trends in AT content, AT and GC-skews 
consistent with the common nucleotide composition of 
mt genomes of Tipuloidea (Zhang et al. 2016).

3.3. Protein-coding genes and codon 
usage 

Each of the two newly sequenced mt genomes has 13 
PCGs, of which COI, COII, COIII, CytB, ATP6, ATP8, 
ND2, ND3 and ND6 are coded on the majority strand, 
and ND4, ND4L, ND5 and ND1 are coded on the minority 
strand (Fig. 3; Table 2). A majority of PCGs in both mt 
genomes show the typical ATN start codons (ATT/ATG); 
TCG is the start codon for COI in both species and TTG 
is the start codon for ND1 in H. (H.) pluto. The majority 
of PCGs also show the typical TAR (TAA/TAG) stop co-
dons, while the partial stop codon T for COII is found in 
both species and for ND5 in E. (E.) inulta (Table 2).

http://www.ncbi.nlm.nih.gov/nuccore/OP556661
http://www.ncbi.nlm.nih.gov/nuccore/OP556662
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Table 2. Organization of the mitochondrial genomes of Elephantomyia (Elephantomyia) inulta and Helius (Helius) pluto.

Gene Direction Location Size (bp) Anticodon
Codon Intergenic 

nucleotide*Start Stop
tRNAMet J 1-70/- 70/- CAT/-
ND2 J 71-1096/1-912 1026/912 ATT/- TAA 0/–
tRNATrp J 1106-1174/911-980 69/70 TCA 9/–2
tRNACys N 1167-1236/973-1042 70/70 GCA –8/18
tRNATyr N 1251-1315/1065-1134 65/70 GTA 14/22
COI J 1314-2849/1150-2685 1536/1536 TCG TAA –2/15
tRNALeu(UUR) J 2852-2918/2689-2756 67/68 TAA 2/3
COII J 2920-3601/2766-3450 682/685 ATG T-tRNA 1/9
tRNALys J 3602-3672/3451-3521 71/71 CTT 0/0
tRNAAsp J 3672-3736/3525-3591 65/67 GTC –1/3
ATP8 J 3737-3898/3592-3756 162/165 ATT TAA/TAG 0/0
ATP6 J 3892-4566/3750-4427 675/678 ATG TAA –7/–7
COIII J 4572-5360/4427-5215 789/789 ATG TAA 5/–1
tRNAGly J 5361-5424/5219-5283 64/65 TCC 0/3
ND3 J 5425-5778/5284-5637 354/354 ATG/ATT TAA 0/0
tRNAAla J 5780-5843/5642-5709 64/68 TGC 1/4
tRNAArg J 5844-5910/5712-5777 67/66 TCG 0/2
tRNAAsn J 5911-5976/5779-5844 66/66 GTT 0/1
tRNASer(AGN) J 5977-6043/5845-5911 67/67 GCT 0/0
tRNAGlu J 6049-6117/5914-5979 69/66 TTC 5/2
tRNAPhe N 6138-6204/5999-6064 67/66 GAA 10/19
ND5 N 6205-7939/6072-7808 1735/1737 ATG T-tRNA/TAA 0/7
tRNAHis N 7940-8005/7809-7875 66/67 GTG 0/0
ND4 N 8013-9353/7877-9217 1341/1341 ATG TAA 7/1
ND4L N 9347-9643/9211-9507 297/297 ATG TAA –7/–7
tRNAThr J 9646-9712/9510-9575 67/66 TGT 2/2
tRNAPro N 9713-9776/9576-9640 64/65 TGG 0/0
ND6 J 9779-10303/9642-10166 525/525 ATT TAA 2/1
CytB J 10303-11439/10170-11306 1137/1137 ATG TAA –1/3
tRNASer(UCN) J 11445-11512/11313-11380 68/68 TGA 5/6
ND1 N 11531-12472/11397-12341 942/945 ATG/TTG TAG 18/16
tRNALeu(CUN) N 12474-12538/12343-12407 65/65 TAG 1/1
lrRNA N 12539-13864/12408-13728 1326/1321 0/0
tRNAVal N 13865-13936/13729-13800 72/72 TAC 0/0
srRNA N 13937-14551/13801-14358 615/558 0/0
* Intergenic nucleotide: minus indicates overlapping between genes.

Figure 3. Gene maps of the mitochondrial genomes of two Elephantomyiini species sequenced in this study. The circular maps were 
drawn with OGDRAW (https://chlorobox.mpimp-golm.mpg.de/OGDraw.html). The transcriptional direction is indicated by arrows.

https://chlorobox.mpimp-golm.mpg.de/OGDraw.html
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The total number of codons of mt genomes are 3,733 
in E. (E.) inulta, and 3,700 in H. (H.) pluto but with in-
complete ND2 (Tables S1, S2). Codon usage values are 
described by relative synonymous codon usage (RSCU), 
which reflects how often each codon is used relative to 
the expected number in the absence of usage bias. All 
RSCU values for each amino acid are similar between 
the two mt genomes, with Leu (UUR) and Ser (UCN) 
being the two most frequently used amino acids, and Leu 
(CUN), Met and Trp being the least. The most frequently 
used codon in each amino acids solely comprises A or T, 
reflecting the high AT content of PCGs (Fig. S1). These 
phenomena were also recorded from other mt genomes of 
lower Diptera (Zhang et al. 2022).

To further investigate evolutionary patterns across the 
PCGs, the ratio of Ka (rates of nonsynonymous muta-
tions)/Ks (rates of synonymous mutations) are calculat-
ed for each (Fig. S2). The Ka/Ks values for all 13 PCGs 
are lower than 1 (<0.70), implying purifying selection 
on all these genes. The Ka/Ks ratio of ND2 is obviously 
higher than other PCGs, which indicates that ND2 has a 
relatively higher evolutionary rate. In contrast, COI has 
the lowest Ka/Ks ratio, indicating that this gene has been 
subjected to the highest purifying selection.

3.4. Transfer and ribosomal RNA 
genes

Twenty tRNA genes are detected in E. (E.) inulta and 19 
tRNAs in H. (H.) pluto. The tRNA genes lengths range 
from 64 bp to 72 bp (Table 2). Most tRNAs can be folded 
into the typical cloverleaf structure, except for tRNASer(AGN) 
whose dihydrouridine (DHU) arm is replaced by a sim-
ple loop (Fig. S3). It is common for tRNASer(AGN) to lack 
the DHU arm in insect mt genomes (Zhang et al. 2016; 
Zhang et al. 2018; Zhu et al. 2018; Ren et al. 2019; Su and 
Liang 2019; Wang and Huang 2019; Li et al. 2021; Mo 
et al. 2022; Zhang et al. 2022). Nucleotide substitutions 
of tRNAs between E. (E.) inulta and H. (H.) pluto range 
from three to 23: tRNAAsp has the least variation with three 
substitutions, while tRNAAla has the most variation with 
23 substitutions and indels.

As in the ancestral insect (Zhang et al. 2016, 2022; 
Chen et al. 2017; Liu et al. 2017; Feng et al. 2018; Zhang 
et al. 2018; Zhu et al. 2018; Ren et al. 2019; Su and Liang 
2019; Wang and Huang 2019; Zhao et al. 2019; Tang et 
al. 2020; Li et al. 2021; Wang et al. 2021; Shi et al. 2021; 
Sun et al. 2021; Zheng et al. 2021; Mo et al. 2022), the lr-
RNA gene in each Elephantomyiini species is located be-
tween tRNALeu(CUN) gene and tRNAVal gene, while the srR-
NA gene is located between tRNAVal gene and the control 
region (not obtained in this study) (Fig. 3). The lengths 
of lrRNAs are 1,326 bp in E. (E.) inulta and 1,321 bp in 
H. (H.) pluto. The assembled srRNA gene in both species 
are incomplete, and the obtained sequence lengths are 
615 bp and 558 bp respectively (Table 2).

3.5. Phylogenetic Analyses

AliGROOVE analysis indicates that Chionea crassipes 
gracilistyla Alexander, 1936 has the strongest heteroge-
neity relative to other Tipuloidea species in all four data-
sets (Fig. S4), which may cause bias tree reconstructions 
and node support in phylogenetic analysis (Kück et al. 
2014). An effective solution is to avoid using this spe-
cies (Soltis et al. 2004). Therefore, C. crassipes gracili-
styla was excluded when constructing phylogenetic trees. 
Twenty-eight representatives from all four families of 
Tipuloidea and three representatives from Trichoceridae 
were included in the phylogenetic analysis. Eight phylo-
genetic trees inferred from the four datasets under BI and 
ML methods were finally constructed (Figs 4, S5–S10), 
resulting in four hypotheses of relationships among major 
groups of Tipuloidea (Fig. 5).

In all BI and ML trees, Pediciidae is sister to all other 
Tipuloidea, and a sister relationship between Cylindroto-
midae and Tipulidae is strongly supported. These ar-
rangements are consistent with the phylogeny by Ribeiro 
(2008) based on 88 morphological characters, Petersen et 
al. (2010) based on combined morphological characters 
and two nuclear genes, Zhang et al. (2016) based on mt 
genomes and Kang et al. (2017) based on transcriptomes.

Limoniidae is not supported as monophyletic clade in 
any phylogenetic trees. Symplecta (Symplecta) hybrida 

Table 3. Nucleotide composition of the mitochondrial genomes 
of two Elephantomyiini species.

Region E. (E.) inulta H. (H.) pluto

Whole mt 
genome

A+T% 76.4 76.8
G+C % 23.7 23.2
AT-skew 0.01 0.02
GC-skew –0.18 –0.21

PCGs

A+T% 75.2 75.8
G+C % 24.7 24.3
AT-skew –0.16 –0.16
GC-skew 0.04 0.03

PCGs(J)

A+T% 74.3 74.5
G+C % 25.7 25.5
AT-skew –0.13 –0.12
GC-skew –0.11 –0.14

PCGs(N)

A+T% 76.8 77.7
G+C % 23.1 22.3
AT-skew –0.22 –0.22
GC-skew 0.28 0.32

tRNAs

A+T% 78.8 79.4
G+C % 21.2 20.7
AT-skew 0.01 0.00
GC-skew 0.11 0.14

lrRNA

A+T% 81.5 82.1
G+C % 18.5 17.9
AT-skew –0.04 –0.05
GC-skew 0.33 0.33

srRNA

A+T% 78.9 76.3
G+C % 21.2 23.7
AT-skew 0.02 –0.03
GC-skew 0.32 0.27

AT-skew = (A-T)/(A+T); GC-skew = (G-C)/(G +C)
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(Meigen, 1804) (Chioneinae) is sister to all non-pedici-
id crane flies in trees inferred from the PCG12RNA and 
PCG12 datasets under BI and ML methods (96% PP, 45% 
BV; 64% PP, 42% BV) (Figs 4A, S5, S7, S8), while in 

the BI tree inferred from the PCG dataset (Fig. 4B), Sym-
plecta is sister to a clade of Cylindrotomidae + Tipulidae 
(93% PP). In the both BI and ML trees inferred from the 
PCGRNA dataset (Figs S9, S10), Symplecta + the Lim-

Figure 4. Phylogenetic trees of Tipuloidea inferred from the datasets A PCG12RNA and B PCG under BI method. Numbers at the 
nodes are posterior probabilities. The family Trichoceridae was set as the outgroup.
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nophilinae species Pseudolimnophila (Pseudolimnoph-
ila) brunneinota Alexander, 1933 is weakly supported 
(55% PP, 60% BV), as sister to all non-pediciid crane flies 
(54% PP, 33% BV). In the ML tree inferred from the PCG 
dataset (Fig. S6), Symplecta is sister to a clade of Limno-
philinae + (Cylindrotomidae + Tipulidae) with a very low 
bootstrap value (19% BV). However, our current taxon 
sampling for Chioneinae is far from extensive, and fur-
ther detailed studies with more taxa are needed before the 
monophyly of Chioneinae can be confidently defined.

Limoniinae (including Elephantomyiini) + Epiphrag-
ma (Epiphragma) mediale Mao and Yang, 2009 (Limno-
philinae) forms a clade in all phylogenetic trees (100% 
or 99% PPs for all BI trees; 65%, 56%, 43% and 37% 
BVs for ML trees). Elephantomyiini (Elephantomyia + 
Helius) (100% PP for all BI trees; 94%, 92%, 92% and 
89% BV for ML trees) and Limoniinae (100% PP/BV for 
all trees) are two well-supported clades, which to some 
extent supports the suggestion of Petersen et al. (2010) to 
treat the monophyletic Elephantomyiini as a subfamily on 
the basis of morphological and molecular data. Although 
Epiphragma consistly shows a distant relationship to oth-
er Limnophilinae in our study and was also treated as a 
subfamily in Petersen et al. 2010, the taxonomic status of 
the group it represents needs further study.

Limnophilinae is a controversial group with respect to 
both its monophyly and relationships with other Limo-
niidae. The main clade of Limnophilinae (including four 
species) is sister to the clade containing Elephantomyiini, 
Epiphragma and Limoniinae in the trees inferred from 
the PCG12RNA dataset under BI and ML methods (95% 
PP, 27% BV) (Figs 4A, S5), while in the remaining trees, 

a clade of Limnophilinae (including three or four species) 
shows a closer relationship to Cylindrotomidae + Tipul-
idae.

Topologies I and II (Fig. 5) based on the PCG12R-
NA and PCG datasets under BI method have high PPs 
(Fig. 4), but are contradictory. FcLM analysis is often 
used to evaluate single topological splits (Trautwein et 
al. 2010; Misof et al. 2014; Peters et al 2014; Winterton 
and Ware 2015; Kang et al. 2017; Narayanan et al. 2018, 
2019; Vasilikopoulos et al. 2019; Zhang et al. 2019; Kar-
meinski et al. 2021; Wang et al. 2022). Two questions that 
reflect the main differences between topologies I and II 
were used for FcLM testing to further evaluate these two 
topologies: 1) Is Symplecta sister to all non-pediciid crane 
flies, or to Cylindrotomidae + Tipulidae? 2) Is Limno-
philinae part of Limoniinae, or does Limnophilinae have 
a closer relationship with Cylindrotomidae + Tipulidae? 
(Table 4). For these tests, species in four datasets were 
grouped into four clusters representing alternative resolu-
tions of these topologies.

Our FcLM analysis shows a support for the sister-group 
relationship between Symplecta and all non-pedici-
id crane flies (51.0%/43.9%/81.4%/81.3%) (Fig. S11). 
FcLM results for the placement of Symplecta are con-
cordant with topology I (Fig. 5). However, the status of 
Limoniinae (except Chioneinae) is not well resolved by 
FcLM analysis (Fig. S12): Limnophilinae is supported 
as part of Limoniinae (as shown in topology I) with the 
support rate of 40.8%/31.4%/36%/18.1% whereas Lim-
nophilinae is supported as sister to Cylindrotomidae + 
Tipulidae (as shown in topology II) with the support rate 
of 30.5%/31.8%/40.4%/49.7%.

Figure 5. Four hypotheses for the relationships among major groups of Tipuloidea in this study. Multiple sampling of different 
species from a single family/subfamily/tribe are collapsed into triangles. Numbers at the nodes are posterior probabilities/bootstrap 
values, NS = not support.
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4. Conclusions

Here, we present the first two mt genomes for the tribe 
Elephantomyiini, which are typical circular DNA mole-
cules with lengths of 14,551 bp and 14,358 bp. Like the 
mt genomes of other crane flies, these two mt genomes 
show similar gene order, nucleotide composition and 
codon usage. Phylogenetic results support both new 
and traditional arrangements. The traditional views, that 
Pediciidae is sister to all remaining Tipuloidea, while Cy-
lindrotomidae and Tipulidae are sister groups, are recon-
firmed in this study. The four-family system of Tipuloidea 
and four-subfamily system of Limoniidae are found to be 
unstable classification systems. The monophyly of Li-
moniidae is not supported in our study, which indicates 
that Limoniidae may not be a natural group. In addition, 
two limoniid subfamilies (i.e. Limoniinae and Limno-
philinae) may be para- or polyphyletic, as Epiphragma 
(Limnophilinae) has a closer relationship with Limoni-
inae. Our study supports the monophyly of Elephanto-
myiini, as Ele phantomyia and Helius form a strongly 
supported clade, which represents a significant origin of 
flower-visiting in Limoniidae. However, the more precise 
phylogenetic position of Elephantomyiini in Tipuloidea, 
as well as other phylogenetic arrangements within Limo-
niidae, needs to be further revealed through additional 
studies with more species.
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