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Abstract

The complete mitogenomes of fruit flies Zeugodacus (Javadacus) calumniatus, Z. (Javadacus) heinrichi and Z. (Sinodacus) ho-
chii have similar gene order and contain 37 genes and a non-coding region. They share an identical start codon for the respective 
protein-coding genes (PCGs), an identical TAA stop codon for 11 PCGs, TAG for cob, and an incomplete T stop codon for nad5. 
The cloverleaf structure of most of the tRNAs is similar in the three Zeugodacus species. Phylogenetic analyses reveal Z. (Para-
sinodacus) cilifer to be external to two main clades: (A) monophyletic subgenus Zeugodacus; and (B) subgenera Javadacus and 
Sinodacus. The present results indicate that the taxonomic status of some taxa needs clarification. Z. calumniatus is genetically very 
similar to Z. tau and is not congruent with its current placement in the munda complex. Z. mukiae NC_067083 is genetically very 
similar to Z. scutellaris, but differs significantly from Z. mukiae MG683384 of the arisanicus (arisanica) complex. On the other hand, 
Z. proprediaphorus is genetically distinct from and not a synonym of Z. diaphorus. Z. caudatus sensu stricto from Indonesia forms 
a sister lineage with Z. diversus, instead of with the Malaysian and Chinese taxa of Z. caudatus sensu lato. A notable incongruence 
is the sister lineage of Z. (Sinodacus) hochii and Z. (Javadacus) heinrichi among other taxa of subgenus Javadacus. A more exten-
sive taxon sampling, particularly the subgenus Sinodacus (and other subgenera), is needed to clarify/resolve their subgenus status.
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1. Introduction

The fruit fly genus Zeugodacus Hendel, 1927 (considered 
previously, and still by some researchers, as a subgenus 
of genus Bactrocera Macquart, 1835) consists of 13 
subgenera with some 200 species worldwide (Hancock 
and Drew 2018a, 2018b). The larvae of many Zeugoda-
cus species have cucurbits as host plants. Some 17 spe-
cies have been listed as pest of cucurbits: 11 species of 
fruit pest and six species of flower pest (Doorenweerd 
et al. 2018). Zeugodacus cucurbitae (Coquillett, 1899), 
a fruit pest, is the economically most important species. 
Based on a global checklist, 195 species are found in the 
Asia-Pacific and one species in Africa (Doorenweerd et 
al. 2018). New species are, however, continuously being 
discovered (Yong et al. 2015a; Kunprom and Pramual 
2019; Prabhakar et al. 2019; Leblanc et al. 2019; Drew 
and Romig 2022).

To date, the subgenus names of genus Zeugodacus 
have not been applied consistently, for example, Z. cu-
curbitae has been treated as a member of subgenus Ja-
vadacus (Hancock and Drew, 2018b; Leblanc, 2022; 
Starkie et al., 2022) and subgenus Zeugodacus (San Jose 
et al. 2018; Zhang et al. 2023), Z. tau as subgenus Ja-
vadacus (Hancock and Drew 2018b; Starkie et al. 2022) 
and subgenus Zeugodacus (San Jose et al. 2018; Zhang 
et al. 2023), and Z. triangularis as subgenus Sinodacus 
(Starkie et al. 2022; Zhang et al. 2023) and subgenus Ze-
ugodacus (Hancock and Drew 2018b).

Based on molecular phylogenetic analysis, some of 
the subgenera (as applied by the researchers) within the 
genus Zeugodacus are recovered as polyphyletic or para-
phyletic (San Jose et al. 2018; Starkie et al. 2022; Zhang 
et al. 2023). However, the assignments of some Zeugo-
dacus species to subgenera are subjected to emendation 
(Hancock and Drew 2018a, 2018b). Hancock and Drew 
(2018b) opined that analysing small groups of subgen-
era separately would enable fine-tuning of the subgeneric 
limits established so far.

Mitochondrial genomes (mitogenomes) of insects 
have been extensively studied and applied particularly 
to studies regarding phylogeny and evolution (Camer-
on 2014). They have been shown to be suitable for re-
solving higher-level phylogeny of Paraneopteran insects 
(Li et al. 2015). Compared to partial sequences of sin-
gle or multiple mitochondrial and nuclear genes (Yong 
et al. 2015a; San Jose et al. 2018; Prabhakar et al. 2019; 
Starkie et al. 2022), there are relatively few studies of the 
genus Zeugodacus based on complete mitogenomes. To 
date, the mitogenomes of some 14 species of the genus 
Zeugodacus (not including the unnamed cryptic species 
such as in Z. caudatus species complex) are available in 
the NCBI GenBank. Of these, four species are fruit pests, 
five species are flower pests, and five species are non-
pest. Furthermore, fewer Zeugodacus mitogenomes have 
been reported compared to genus Bactrocera (Yong et al. 
2021; Zhang et al. 2023).

In view of the lack of mitogenomic studies in the ge-
nus Zeugodacus and the unresolved systematic status of 

some taxa, we sequenced and annotated the complete mi-
togenomes of Z. (Javadacus) calumniatus (Hardy 1970), 
Z. (Javadacus) heinrichi (Hering, 1941) and Z. (Sinoda-
cus) hochii (Zia, 1936) to determine their genomic fea-
tures, and phylogenetic relationships with other conge-
ners. Z. calumniatus and Z. heinrichi are non pest, while 
Z. hochii is a Cucurbitaceae fruit pest (Doorenweerd et al. 
2018). At the time of this study (sequencing performed 
in September 2018), there were no reports on the mitog-
enomes of these three species. The present study is still 
the first report on the mitogenomes of Z. calumniatus and 
Z. heinrichi. These whole mitogenomes will serve as a 
useful dataset for studying the genetics, systematics and 
phylogeny of the Zeugodacus genus and subgenera in 
particular, and tephritid fruit flies in general.

2. Materials and methods

2.1. Sample collection and mito
chondrial DNA extraction

The male fruit flies of Z. calumniatus and Z. heinrichi were 
collected by H-S Yong and IW Suana on the way to Rinja-
ni, Lombok, Indonesia (8°33′54.00″S, 116°21′3.60″E) on 
6 November 2015; Z. hochii was collected by H-S Yong 
in the garden of the Institute of Biological Sciences, Uni-
versiti Malaya, Kuala Lumpur, Malaysia (3°07ʹ9.00ʺN, 
101°39′13.79″E) on 29 October 2011. They were col-
lected by means of cue-lure, preserved in absolute eth-
anol and stored in a –20 °C freezer until used for DNA 
extraction. The specimens were identified according to 
existing literature (Drew and Romig 2013, 2016), and 
verified with published cox1 sequences in GenBank. The 
isolation of mitochondria and the extraction of mitochon-
drial DNA (mtDNA) were carried out according to the 
method of Yong et al. (2015b, 2016a). No permits are 
needed to study these fruit flies; they are not endangered 
or protected by law.

2.2. Library preparation and genome 
sequencing

The methods described by Yong et al. (2016b) and Song 
et al. (2018) were used for sample and library prepara-
tion (using Nextera DNA Sample Preparation Kit), and 
genome sequencing using the Illumina MiSeq Desktop 
Sequencer (2 × 150 bp pair-end reads) (Illumina, USA). 
The mitogenome sequences have been deposited in the 
GenBank under the accession numbers: Z. calumniatus 
OQ730413; Z. heinrichi OQ730414; and Z. hochii OQ730415.

2.3. Mitogenome analysis

Analysis of mitogenome, gene annotation, visualiza-
tion and comparative analysis are detailed in Yong et al. 

http://www.ncbi.nlm.nih.gov/nuccore/OQ730413
http://www.ncbi.nlm.nih.gov/nuccore/OQ730414
http://www.ncbi.nlm.nih.gov/nuccore/OQ730415
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(2021). Gene annotation of the assembled mitogenome 
was first carried out at MITOS web-server (http://mitos.
bioinf.uni-leipzig.de/index.py) (Bernt et al. 2013). The 
nucleotide composition, amino acid frequency and rela-
tive synonymous codon usage (RSCU) were determined 
using MEGA X (Kumar et al. 2018). DnaSP 6 (Rozas et 
al. 2017) was used to estimate the ratios of non-synon-
ymous substitutions (Ka) and synonymous substitutions 
(Ks) for the PCGs. The AT and GC skewness were de-
termined according to Perna and Kocher (1995). Pal-
indromes (inverted repeats) in the control region were 
checked with Tandem Repeats Finder (Benson 1999). 
Blast ring image generator (BRIG) (Alikhan et al. 2011) 
was used to create the circular map of the mitogenomes. 
Transfer RNA (tRNA) genes were identified by MITOS 
web-server (Bernt et al. 2013).

2.4. Mitogenomes from GenBank and 
phylogenetic analysis

The mitogenomes of Zeugodacus taxa available from 
GenBank (Table S1: subgenera based on Hancock and 
Drew 2018a, 2018b) were used for phylogenetic com-
parison. Two species of genus Ceratitis (C. fasciventris 
NC_035497 and C. rosa NC_053847) were used as outgroup 
taxa.

Alignment of nucleotide sequences and reconstruc-
tion of phylograms followed those described in Yong et 
al. (2015a, 2015b, 2016a, 2016b) and Song et al. (2018). 
Briefly, the gene sequences were aligned by MAFFT 
version 7 (Katoh and Standley 2013) and subsequently 
edited and trimmed using BioEdit v.7.0.5.3 (Hall 1999). 
Kakusan v.3 (Tanabe 2007) was used to determine the 
best-fit nucleotide substitution models for maximum like-
lihood (ML) analysis selected using the corrected Akaike 
Information Criterion (Akaike 1973).

Phylograms of 13 concatenated PCGs, and 15 mt-
genes (13 PCGs and 2 rRNA genes) were reconstructed 
using TreeFinder (Jobb et al. 2004). Bootstrap values 
(BP) were generated via 1000 ML bootstrap replicates. 
Bayesian analyses were conducted using the Markov 

chain Monte Carlo (MCMC) method via Mr. Bayes 
v.3.1.2 (Huelsenbeck and Ronquist 2001), with two inde-
pendent runs of 2×106 generations with four chains, and 
with trees sampled every 200th generation. Likelihood 
values for all post-analysis trees and parameters were 
evaluated for convergence and burn-in using the “sump” 
command in MrBayes and the computer program Tracer 
v.1.5 (http://tree.bio.ed.ac.uk/software/tracer/). The first 
200 trees from each run were discarded as burn-in (where 
the likelihood values were stabilized prior to the burn-
in), and the remaining trees were used for the construc-
tion of a 50% majority-rule consensus tree. Phylogenetic 
trees were viewed and edited by FigTree v.1.4 (Rambaut 
2012). Uncorrected pairwise (p) genetic distances were 
estimated using PAUPb10 software (Swofford 2002).

A ML/BI phylogenetic tree based on the partial cox1 
sequences of selected closely related Zeugodacus taxa, 
with Dacus species as outgroup taxa, was reconstructed 
to elucidate their phylogenetic relationship.

3. Results

3.1. Mitogenome features

The mitogenomes of Z. calumniatus, Z. heinrichi and 
Z. hochii had similar gene order and contained 37 genes 
(13 protein-coding genes – PCGs, 2 rRNA genes, and 22 
tRNA genes) and a non-coding region (A + T-rich con-
trol region) (Table 1; Fig. 1). The three whole mitoge-
nomes were AT-rich, ranging from 71.1% (Z. hochii) to 
73.5% (Z. calumniatus), with positive AT and negative 
GC skewness values (Table S2).

All three Zeugodacus species had 15 intergenic regions 
and overlaps in 12 regions (Table 1). The longest spacing 
sequence (34 bp in Z. calumniatus, 38 bp in Z. heinrichi, 
35 bp in Z. hochii) was between trnR and trnN genes. 
This sequence had clear stem-loop structures (Fig. S1). 
The longest overlap in all three species was 65 bp be-
tween the trnS2 and nad1 genes.

Table 1. Gene order and organization of the mitochondrial genome of Zeugodacus calumniatus (Zca), Z. heinrichi (Zhe) and Z. 
hochii (Zho). *Minus (–) sign indicates overlap.

Gene Strand
Size (bp) Intergenic sequence* Start codon Stop codon
Zca/Zhe/Zho Zca/Zhe/Zho Zca/Zhe/Zho Zca/Zhe/Zho

trnI(atc) J 66/66/66 –3/–3/–3
trnQ(caa) N 69/69/69 8/10/8
trnM(atg) J 69/69/69 0/0/0
nad2 J 1023/1023/1023 9/9/10 ATA/ATT/ATT TAA/TAA/TAA
trnW(tga) J 68/68/68 –8/–8/–8
trnC(tgc) N 63/63/63 1/0/1
trnY(tac) N 67/67/67 –2/–2/–2
cox1 J 1539/1539/1539 –5/–5/–5 TCG/TCG/TCG TAA/TAA/TAA
trnL2(tta) J 66/66/66 4/4/4
cox2 J 690/690/690 5/5/5 ATG/ATG/ATG TAA/TAA/TAA
trnK(aag) J 71/71/71 0/1/0
trnD(gac) J 67/67/68 0/0/0

http://mitos.bioinf.uni-leipzig.de/index.py
http://mitos.bioinf.uni-leipzig.de/index.py
http://www.ncbi.nlm.nih.gov/nuccore/NC_035497
http://www.ncbi.nlm.nih.gov/nuccore/NC_053847
http://tree.bio.ed.ac.uk/software/tracer/
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3.2. Protein coding genes and codon 
usage

The A + T content for the 13 PCGs of the three Zeugo-
dacus mitogenomes ranged from 68.6% (Z. hochii) to 
71.5% (Z. calumniatus), with negative AT and GC skew-
ness values (Table S2). The 1st codon position had posi-
tive GC skewness values, while the 2nd and 3rd codon po-
sitions had negative GC skewness values.

For the individual PCGs, the A+T content ranged from 
65.0% for cox3 to 80.4% for nad4L in Z. calumniatus, 
65.3% for cox3 to 77.8% for nad4L and nad6 in Z. hein-
richi, and 63.1% for cox3 to 77.4% for nad4L in Z. hochii 
(Table S3). All the PCGs had negative AT skewness val-
ues (Table S3); nad1, nad4, nad4L and nad5 had negative 
GC skewness values, the other nine PCGs had positive 
GC skewness values.

Zeugodacus calumniatus, Z. heinrichi and Z. hochii 
shared an identical start codon for the respective PCGs 
(Table 1). The most common start codon was ATG (in 6 
PCGs – cox2, atp6, cox3, nad4, nad4L, cob), followed 
by three ATA (nad2, nad3, nad1), three ATT (atp8, nad5, 
nad6), and one TCG (cox1). The three species had an 
identical TAA stop codon for 11 PCGs (nad2, cox1, cox2, 
atp8, atp6, cox3, nad3, nad4, nad4L, nad6, nad1), one 
PCG had TAG (cob), and one PCG (nad5) had an incom-
plete T stop codon (Table 1).

The frequency of individual amino acids varied among 
the congeners of Zeugodacus (Fig. 2). However, the most 
frequently utilized codons were highly similar in these 
mitogenomes. The frequency of individual amino acids 
was very similar in the three congeners. The predominant 

amino acids (with frequency above 200) in all the three 
mitogenomes were glycine, isoleucine, leucine2, phe-
nylalanine, serine2, and valine (Table S4). Cysteine had 
the lowest frequency of 44 in Z. calumniatus and 45 in 
Z. heinrichi and Z. hochii.

Analysis of the relative synonymous codon usage 
(RSCU) revealed that there was no biased usage of A/T 
than G/C at the third codon position (Table S5; Fig. 2). 
The frequency of each codon was similar across the three 
Zeugodacus mitogenomes. The most commonly used co-
don was UUA encoding for leucine2, and the least com-
monly used codon was AGG encoding for serine1 (Table 
S5; Fig. 2).

The Ka/Ks ratio (an indicator of selective pressure on 
a PCG) was less than 1 for all the 13 PCGs in the three 
Zeugodacus mitogenomes, indicating purifying selection 
(Table S6; Fig. 3). The cox1 gene had the lowest ratio 
(Ka/Ks = 0.006) for Z. calumniatus and Z. heinrichi, and 
the third lowest for Z. calumniatus and Z. hochii (Ka/
Ks = 0.013) as well as Z. heinrichi and Z. hochii (Ka/
Ks = 0.017).

3.3. Ribosomal RNA genes and 
transfer RNA genes

Of the two rRNA genes in the three Zeugodacus mitoge-
nomes, rrnS (793 bp in all three mitogenomes) was much 
shorter than rrnL (1327 to 1329 bp) (Table 1). They were 
AT-rich, ranging from 76.6% (Z. hochii) to 77.8% (Z. ca-
lumniatus), with positive AT skewness and negative GC 
skewness values (Table S2).

Gene Strand
Size (bp) Intergenic sequence* Start codon Stop codon
Zca/Zhe/Zho Zca/Zhe/Zho Zca/Zhe/Zho Zca/Zhe/Zho

atp8 J 162/162/162 –7/–7/–7 ATT/ATT/ATT TAA/TAA/TAA
atp6 J 678/678/678 –1/–1/4 ATG/ATG/ATG TAA/TAA/TAA
cox3 J 789/789/789 6/6/6 ATG/ATG/ATG TAA/TAA/TAA
trnG(gga) J 65/65/65 –3/–3/–3
nad3 J 357/357/357 4/4/3 ATA/ATA/ATA TAA/TAA/TAA
trnA(gca) J 66/66/66 4/4/4
trnR(cga) J 64/64/67 34/38/35
trnN(aac) J 65/65/65 0/0/0
trnS1(agc) J 68/68/68 0/0/0
trnE(gaa) J 68/68/68 18/18/18
trnF(ttc) N 66/66/66 0/0/0
nad5 N 1720/1720/1720 15/15/15 ATT/ATT/ATT T--/T--/T--
trnH(cac) N 65/66/65 3/3/3
nad4 N 1341/1341/1341 –7/–7/–7 ATG/ATG/ATG TAA/TAA/TAA
nad4L N 297/297/297 2/2/2 ATG/ATG/ATG TAA/TAA/TAA
trnT(aca) J 65/65/65 0/0/0
trnP(cca) N 66/66/66 2/2/2
nad6 J 525/525/525 –1/–1/–1 ATT/ATT/ATT TAA/TAA/TAA
cob J 1137/1137/1137 –2/–2/–2 ATG/ATG/ATG TAG/TAG/TAG
trnS2(tca) J 67/67/67 –65/–65/–65
nad1 N 1020/1020/1020 10/10/10 ATA/ATA/ATA TAA/TAA/TAA
trnL1(cta) N 65/65/65 0/0/–1
rrnL N 1327/1328/1329 0/0/0
trnV(gta) N 72/72/72 –1/–1/–1
rrnS N 793/793/793 0/0/0
Control region J 946/943/945
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The tRNA genes were AT-rich, ranging from 74.3% 
(Z. hochii) to 74.8% (Z. calumniatus), with negative AT 
skewness and positive GC skewness values (Table S2). 
The cloverleaf structure of most of the tRNAs was simi-
lar in the three Zeugodacus species (Fig. 4). They lacked 
the DHU loop for serine S1 (trnS1), and had short DHU 
stem (3 bp) for asparagine, isoleucine, leucine L1, leucine 
L2, lysine, and tyrosine. Phenylalanine (trnF) in Z. ca-
lumniatus and Z. heinrichi lacked the TΨC loop. The dis-
criminator base in lysine was A for Z. hochii, but G for 
Z. calumniatus and Z. heinrichi.

3.4. Control region

The control region of the three mitogenomes was AT-
rich, ranging from 83.0% (Z. hochii) to 85.3% (Z. ca-

lumniatus), with positive AT skewness and negative 
GC skewness values (Table S2). It was flanked by rrnS 
and trnI genes respectively, with 946 bp in Z. calum-
niatus, 943 bp in Z. heinrichi and 945 bp in Z. hochii. 
A long poly-A stretch was present in the same posterior 
region of the three mitogenomes – 21 bp in Z. calum-
niatus and Z. hochii, and 23 bp in Z. heinrichi. There 
was a long poly-T stretch in the same middle region – 
18 bp in Z. caluminatus, and 19 bp in Z. heinrichi and 
Z. hochii.

The simple tandem repeats in the control region com-
mon to the three mitogenomes were: (ATT)2, (TAA)2, 
(TAT)2, (TTAAA)2, (TTAA)3, (TA)3, and (TA)6. In addi-
tion, there were repeats present only in a single mitoge-
nome as well as in two of the three mitogenomes. Some 
nucleotide motifs in one or more mitogenomes were sim-
ple tandem repeats as well as palindromes – ATAATA, 

Figure 1. Complete mitogenomes of Zeugodacus calumniatus, Z. heinrichi and Z. hochii, with BRIG visualization showing the pro-
tein-coding genes, rRNA genes and tRNA genes. GC skew is shown on the outer surface of the ring whereas GC content is shown 
on the inner surface. The anticodon of each tRNA gene is shown in parentheses.
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TATTAT, ATTAATTA, AATAAAATAA, TAATTAAT, 
and AATAAAATAAAATAA.

Two palindromes in the control region were common 
to the three mitogenomes – TAAAAT (n = 5 in Z. ca-
lumniatus and Z. heinrichi, n = 6 in Z. hochii); and TTA-
ATT (n = 4 in Z. calumniatus, n = 1 in Z. heinrichi, n = 
3 in Z. hochii). Three palindromes (AATTAA, ATTTTA, 

GATTAG) were common to Z. calumniatus and Z. hein-
richi, while two (AATTTTAA, ATTAATTA) were com-
mon to Z. heinrichi and Z. hochii. The palindromes 
present only in one mitogenome were: TTAAAATT and 
AAAATTTTAAAA in Z. calumniatus, TTTAATTT in 
Z. heinrichi, and AATTAA, ATAAAATA and CGGGGC 
in Z. hochii.

Figure 2. Amino acid frequency (Top) and relative synonymous codon usage (Bottom) of PCGs in the Zeugodacus mitogenomes 
generated using MEGA X (https://www.megasofware.net/). Zca, Zeugodacus calumniatus; Zhe, Zeugodacus heinrichi; Zho, Zeu-
godacus hochii.

Figure 3. Box plot for pairwise divergence of Ka/Ks ratio (mean ± SD, and range) for 13 protein-coding genes (PCGs) of three 
Zeugodacus mitogenomes (Z. calumniatus, Z. heinrichi, Z. hochii) generated using DnaSP6.0. (http://www.ub.edu/dnasp).

https://www.megasofware.net/
http://www.ub.edu/dnasp
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3.5. Phylogenetic analysis/
relationship

The phylogenetic trees based on 13 PCGs and 15 mt-
genes (13 PCGs and 2 rRNA genes) revealed identical 
topology with very good nodal support based on ML and 
BI methods (Fig. 5). Z. (Parasinodacus) cilifer was ex-

ternal to two main clades: (1) Clade A comprising taxa 
of subgenus Zeugodacus (as defined by Hancock and 
Drew 2018a, 2018b) – Z. diaphorus, Z. proprediapho-
rus, Z. scutellaris, Z. mukiae, Z. scutellatus, Z. cauda-
tus species complex, Z. diversus, Z. triangularis, and Z. 
strigifinis [Z. mukiae NC_067083 might be a misidentified 
taxon – see Discussion]; and (2) Clade B containing other 

Figure 4. Cloverleaf structure of the 22 inferred tRNAs in the mitogenomes of Zeugodacus calumniatus (Zca), Z. heinrichi (Zhe) 
and Z. hochii (Zho).

http://www.ncbi.nlm.nih.gov/nuccore/NC_067083
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subgenera (Javadacus and Sinodacus) – Z. calumniatus, 
Z. tau, Z. cucurbitae, Z. heinrichi, Z. hochii, and Z. de-
pressus.

The sister lineage of Z. triangularis and Z. strigifinis 
was external to the other taxa of subgenus Zeugodacus 
in Clade A. Of the other taxa of subgenus Zeugodacus, 
Z. mukiae NC_067083 formed a sister lineage with one of 

the two Z. scutellaris taxa (Fig. 5). The genetic distance 
(based on 15 mt-genes) between Z. mukiae and Z. scutel-
laris was p = 0.4% and 0.9%, and the distance between 
the two Z. scutellaris taxa was p = 0.7% (Table S7). In 
addition, Z. diversus formed a sister lineage with Z. cau-
datus Indonesia in a subclade containing Z. caudatus Ma-
laysia and Z. caudatus China.

Fi
gu

re
 5

. P
hy

lo
ge

ne
tic

 tr
ee

s 
(M

L/
B

I)
 o

f (
a)

 1
5 

m
t-g

en
es

 (1
3 

PC
G

s 
+ 

2 
rR

N
A

 g
en

es
), 

an
d 

(b
) 1

3 
PC

G
s 

of
 th

e 
w

ho
le

 m
ito

ge
no

m
e 

of
 Z

eu
go

da
cu

s f
ru

it 
fli

es
 w

ith
 C

er
at

iti
s 

fa
sc

iv
en

tr
is

 a
nd

 C
. r

os
a 

as
 o

ut
gr

ou
p 

ta
xa

. N
um

er
ic

 v
al

ue
s a

t t
he

 n
od

es
 a

re
 M

L 
bo

ot
st

ra
p 

an
d 

B
ay

es
ia

n 
po

st
er

io
r p

ro
ba

bi
lit

ie
s. 

Th
e 

su
bg

en
us

 n
am

es
 a

re
 b

as
ed

 o
n 

H
an

co
ck

 
an

d 
D

re
w

 (2
01

8a
, 2

01
8b

).

http://www.ncbi.nlm.nih.gov/nuccore/NC_067083


Arthropod Systematics & Phylogeny 81, 2023, 747–759 755

In Clade B, Z. calumniatus formed a sister lineage 
with Z. tau in a subclade containing also Z. cucurbitae, 
while Z. heinrichi and Z. hochii formed a sister lineage in 
another subclade; Z. depressus was sister/external to the 
remaining Clade B taxa. A notable incongruence was the 
sister lineage of Z. (Sinodacus) hochii with Z. (Javada-

cus) heinrichi among other taxa of subgenus Javadacus 
(Fig. 5).

Figure 6 depicts the molecular phylogeny of selected 
Zeugodacus taxa with Dacus species as outgroup taxa 
based on partial cox1 gene. Most of the nodes were fully 
supported.
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4. Discussion

Like other tephritid fruit flies, as well as other insects, the 
mitogenomes of Z. calumniatus, Z. heinrichi and Z. ho-
chii have the three main clusters of characteristic tRNA 
genes (Fig. 1): (1) I-Q-M (isoleucine, glutamate and me-
thionine); (2) W-C-Y (tryptophan, cysteine and tyrosine); 
and (3) A-R-N-S1-E-F (alanine, arginine, asparagine, ser-
ine S1, glutamate and phenylalanine) (Cameron 2014). 
They also have the atypical cloverleaf structure of serine 
S1 (trnS1), which is common in all Metazoa (Jühling et 
al. 2012).

The A-T rich control region of the three Zeugodacus 
mitogenomes possesses both similar and dissimilar fea-
tures, such as a long poly-A stretch, a long poly-T stretch, 
tandem repeats and palindromes. Due to its high variabil-
ity, lack of purifying selection and higher substitution 
rate, this non-coding control region has been explored for 
its phylogenetic utility. For example, it has been report-
ed to be of possible phylogenetic utility in some groups 
of Hemiptera (Li and Liang 2018), a powerful marker 
for phylogenetic inference in echinoids (Bronstein et al. 
2018), and successful for differentiating the BPH (Brown 
Plant Hopper, Nilaparvata lugens) populations (Anand et 
al. 2022).

The cox1 gene, with very low Ka/Ks ratio (0.006 
to 0.017) in the three Zeugodacus mitogenomes of the 
present study, representing fewer changes in amino ac-
ids, supports its use as a molecular marker for species 
differentiation and DNA barcoding (Doorenweerd et al. 
2020; Lopez-Vaamonde et al. 2021). Genes with very low 
Ka/Ks ratio, such as cox1, atp6 and cox3 (Fig. 3), reflect 
the purifying selection that acts on most protein-coding 
genes. This suggests that any mutations that reduce their 
function would be quickly eliminated from the population 
due to their deleterious effects on fitness. In this study, the 
atp8 gene has a comparatively higher Ka/Ks ratio (Fig. 
3). There are similar results in other insect groups, such 
as the true bugs in which atp8 shows sign of positive se-
lection (Gonçalves et al. 2022).

In the present study, Z. mukiae NC_067083 is genetically 
very similar to Z. (Zeugodacus) scutellaris, with p = 0.4–
0.9% based on 15 mt-genes (Table S7), and p = 0.3–0.4% 
based on partial cox1 sequences (Table S8), indicating 
that it may be a misidentification, as it differs from the 
taxon Z. mukiae MG683384 with p = 12.6% based on par-
tial cox1 sequences (Table S8; Fig. 6). A similar incorrect 
taxonomic identification has also been inferred for Z. ca-
lumniatus, with maximum intraspecific genetic distance 
of p = 8.8% based on partial cox1 sequences (Kunprom 
and Pramual 2019).

Previous work has shown that the ‘canonical’ Z. muki-
ae is a member of the arisanicus (arisanica) complex and 
not the scutellaris complex (Hancock and Drew 2018b; 
San Jose et al. 2018). Additionally, it was shown that 
Z. mukiae MG683384 forms a lineage with Z. trilineatus 
and Z. arisanicus (San Jose et al. 2018). However, based 
on partial cox1 sequences of selected taxa (this study), 
Z. arisanicus is sister to subgenus Zeugodacus and does 

not form a sister lineage with Z. mukiae and Z. trilineatus 
(Fig. 6). Z. arisanicus was previously assigned to the sub-
genus Parazeugodacus (San Jose et al. 2018).

Zeugodacus calumniatus is genetically very similar to 
Z. tau with p = 0.8% based on 15 mt-genes (Table S7; 
Fig. 5); the intraspecific genetic distance of Z. tau is p = 
0.2–0.7%. Based on partial cox1 sequences, the genetic 
distance between Z. calumniatus and Z. tau is p = 0.6–
1.0% (Table S8; Fig. 6); the intraspecific genetic distance 
of Z. calumniatus is p = 0.4%. In an earlier study based on 
partial cox1 sequences from bp 50–700, the intraspecific 
uncorrected genetic distance of the Z. tau taxa from Chi-
na, Bangladesh, India (Meghalaya, north of Bangladesh) 
and Malaysia ranges from p = 0 to p = 0.72% (Yong et al. 
2017). In the finding of Kunprom and Pramual (2019), 
the closest genetic distance between Z. calumniatus from 
Indonesia and Z. tau is p = 0.2% based on partial cox1 
sequences. Z. calumniatus is placed in the munda com-
plex by Hancock and Drew (2018b); it is grouped with 
the lineage (Z. cucurbitae – Z. tau) based on molecular 
phylogeny (San Jose et al. 2018).

The taxonomic status of Z. calumniatus needs clarifica-
tion as it is morphologically very similar to Z. tau (Drew 
and Romig 2013, 2016); it “is similar in most respects to 
tau (Walker) and is differentiated by the presence of the 
prominent brown mark extending over the m crossvein” 
(Hardy 1974). Nonetheless, in the present study, Z. ca-
lum niatus is distinctly separated from the Z. tau taxa in 
the calumniatus-tau sister lineage of subgenus Javadacus 
(Fig. 5). There are similar examples of closely related te-
phritid fruit flies with small genetic distance, for example, 
Bactrocera carambolae and B. dorsalis (currently accept-
ed as good species) with p = 1.2% based on 15 mt-genes 
(Yong et al. 2016a).

In the current taxonomic treatment, Zeugodacus pro-
prediaphorus (previously Bactrocera proprediaphora 
Wang et al., 2008) is synonymised with Zeugodacus 
dia phorus (previously Bactrocera diaphora) (Drew and 
Romig 2013). The present phylogenetic analysis re-
veals that Z. proprediaphorus is genetically distinct from 
Z. dia phorus, with a genetic distance of p = 2.9–3.0% 
based on 15 mt-genes; the intraspecific genetic distance 
of Z. diaphorus is p = 0.1% (Table S7). This is concor-
dant with the phylogenetic analysis by Wang et al. (2020) 
which indicates the two taxa to be closely related. An in-
tegrative study based on multiple individuals and com-
prehensive sampling is needed to elucidate the species 
status of Z. proprediaphorus.

It is noteworthy that Z. diversus forms a sister lin-
eage with Z. caudatus Indonesia in a subclade contain-
ing Z. caudatus Malaysia and Z. caudatus China (Fig. 5). 
Earlier molecular phylogeny has shown the Malaysian 
and Chinese taxa of Z. caudatus to be genetically very 
different from and hence not conspecific with Z. caudatus 
sensu stricto from Indonesia (Yong et al. 2015a, 2016b). 
Further taxonomic work is needed to formally erect the 
Malaysian population as a new species.

A notable incongruence in the present study is the 
grouping of Z. (Sinodacus) hochii with Z. (Javadacus) 
heinrichi among other taxa of subgenus Javadacus 

http://www.ncbi.nlm.nih.gov/nuccore/NC_067083
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(Fig. 5). An earlier study on molecular phylogeny also 
indicates the grouping of Z. (Sinodacus) hochii with 
Z. (Javadacus) heinrichi in the same clade (San Jose et 
al. 2018). This raises the question whether Z. heinrichi 
is a member of subgenus Sinodacus, or Z. hochii a mem-
ber of subgenus Javadacus. Assuming that the subgenus 
Sinodacus forms a lineage in the same clade as the sub-
genus Javadacus, the subgenus status of Z. (Javadacus) 
depressus (the external taxon to the other taxa in Clade B) 
also needs clarification as it has been assigned to subge-
nus Paradacus Perkins, 1938 in some studies (see Jeong 
et al. 2017). The recent study of Zhang et al. (2023) on the 
mitogenomes of tephritid fruit flies has recovered para-
phyletic/polyphyletic subgenera within the genus Zeugo-
dacus. Our present results add to these inconsistencies. A 
more extensive taxon sampling, particularly the subgenus 
Sinodacus (and other subgenera), is needed to clarify/re-
solve their subgenus status. Independent sources of infor-
mation from across the genome (e.g. independent nuclear 
genes) are also important to confirm/establish their taxo-
nomic relationships.

In summary, we have successfully sequenced and an-
notated the whole mitochondrial genomes of Z. (Javad-
acus) calumniatus, Z. (Javadacus) heinrichi and Z. (Si-
no dacus) hochii. The genome features are similar in the 
three species. Phylogenetic analysis based on the mt-
genes reveals two major clades of the Zeugodacus taxa: 
(A) monophyletic subgenus Zeugodacus, and (B) subge-
nera Javadacus and Sinodacus; Z. (Parasinodacus) cilif-
er is external to the two main clades. It reveals the incon-
gruence of Z. (Sinodacus) hochii forming a sister lineage 
with Z. (Javadacus) heinrichi. It also indicates the need 
to clarify the taxonomic status of Z. mukiae NC_067083 and 
Z. calumniatus. On the other hand, the results indicate the 
possible valid species status of Z. proprediaphorus (ge-
netically distinct from and likely not a synonym of Z. dia-
phorus). A broad taxon sampling of subgenus Sinodacus 
and other subgenera will help to clarify their taxonomic 
status and phylogeny.
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